1-4 روش­های جداسازی 5

1-5سوزن­ها 8

1-6 نحوه بر هم کنش سوزن با سطح 9

1-7 مدهای تماسی 10

1-8 میکروسکوپ گمانه ی روبشی SPM 11

1-8-1 میکروسکوپ­های پروبی- روبشی 11

1-8-2 میکروسکوپ الکترونی عبوری (TEM) 13

1-8-3 میکروسکوپ نیروی اتمی(AFM) 14

1-8-4 میکروسکوپ روبشی جریان تونلی 18

1-8-5 میکروسکوپ الکترونی روبشی (SEM) 18

1-8-6 میکروسکوپ نیروی مغناطیسی(MFM) 22

1-8-7 میکروسکوپ روبشی تونلی (STM) : 22

فصل دوم : لایه­نشانی 26

مقدمه 27

2-1 تعریف لایه­نشانی 28

2-2 تاریخچه لایه­های نازک 28

2-3 تقسیم بندی لایه­ها از نظر ضخامت 29

2-4 تقسیم بندی لایه­ها بر اساس رسانایی 30

2-5 عوامل مؤثر در کیفیت لایه­های نازک 30

2-6 فرایندهای لایه­نشانی 31

2-6-1  فرایند تبخیر فیزیکی 31

2-6-2 روش پراکنشی (کند و پاش) 32

2-6-3 تبخیر با باریکه الکترونی(E.Beam) 33

فصل سوم : تبدیل فوریه ، تبدیل فوریه­ی زمان کوتاه و تبدیل موجک 35

مقدمه 36

3-1 تبدیل فوریه و تبدیل فوریه­ی زمان کوتاه (پنجره) 37

3-2 تبدیل موجک 40

3-3 مقیاس گذاری 43

3-4  انتقال 43

3-2-1 تبدیل موجک پیوسته CWT 44

3-2-2 تبدیل موجک گسسته DWT 47

فصل چهارم : بحث و نتایج 49

مقدمه 50

4-1 مواد و روش ساخت 51

4-1-1 مواد آزمایش 51

4-1-2 روش ساخت 51

4-2 بکارگیری موجک درتصاویر SEM 53

4-2-1 پارامتر مقیاس 53

4-2-2 انتخاب تبدیلات موجک 54

4-2-3 ویژگی خانواده­ی تبدیلات موجک 54

4-2-4 پروفایل نماینده 54

4-2-5 پردازش تصویر 55

4-2-6 تحلیل داده با استفاده از نمودار 59

4-2-7 معرفی نمودارها 59

4-2-8 رسم  نمودار داده­های مربوط به جزئیات 59

4-2-9 رسم  نمودار تقریب مرتبه سوم 61

منابع                                                                                                                        . 64

فهرست اشکال

شکل 1-1 دسته بندی کلی روش­های وآنالیز مواد 7

شکل 1-2  انواع شکل­های سوزن شامل نوک تخت، نوک کروی، نوک T شکل و نوک تیز 8

  برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

شکل 1-3 سمت چپ:  نمایش نمادین بزرگی تغییرات نیروی بین سوزن و سطح در فواصل مختلف سوزن از سطح سمت راست: انحراف تیرک حین رفت و برگشت در نواحی مختلف فاصله از سطح (نیروی جاذبه یا دافعه). 9

شکل 1-4 مقایسه نمادین بین حالت تماسی و حالت غیرتماسی 10

شکل 1-5 تصویر (a)یک قطعه پیزوالکتریک (b)پروب (سوزن) 12

شکل 1-6  طرحی از یک میکروسکوپیک الکترونی 14

شکل 1-7 شماتیک اصول عملکرد  AFM 15

شکل 1-8 ساختار هندسه سه بعدی واحدهای حافظه  CD تهیه شده توسط   AFM (هر واحدافقی نمودار 250 نانومتر و درجه عمودی 75 نانومتر) 16

شکل 1-9 تصویر یک نوع میکروسکوپ نیروی اتمی 17

شکل 1-10 تصویر الکترونی روبشی سطح یک فلز با مقیاس یک میکرون اجزاء اصلی و حالت کاری یک SEM  ساده 19

شکل 1-11 (a) طرحی از یک میکروسکوپیک الکترونی (b) شکل واقعی میکروسکوپ الکترونی 20

شکل1-12 نمودار شماتیکی اجزاء اصلی یک میکروسکوپ الکترونی روبشی 20

شکل 1-13 نمایش نمادین اجزای اصلی و اصول عملکرد دستگاه STM 23

شکل 1-14 مسیر سوزن در مد جریان ثابت 24

شکل1-15ساختاراتمی یک نانوتیوب تک جداره کربن توسطSTM 25

شکل 2-1 طرحی از یک دستگاه کندوپاش 33

شکل 2-2 تصویر دستگاه کندوپاش تبخیر فیزیکی 34

شکل 3-1 روند تبدیل فوریه­ی زمان کوتاه 38

شکل 3-2 نمایش تبدیل  فوریه­ی زمان کوتاه یک سیگنال. طول پنجره زمانی در طول کل زمان سیگنال ثابت است. 40

شکل 3-3  تفکیک سیگنال به موجک­های مادر تشکیل دهنده آن با استفاده از ضرائب تبدیل موجک 41

شکل 3-4 نحوه عمل در تبدیل موجک 42

شکل 3-5 اثر scale factor بر روی یک موجک 43

شکل 3-6 انتقال یک موجک 43

شکل 3-7 مرحله دوم تبدیل موجک پیوسته 46

شکل 3-8 مرحله سوم تبدیل موجک پیوسته 46

شکل 3-9 مرحله چهارم تبدیل موجک پیوسته 46

شکل 3-10 نمایشی از قدرت تفکیک زمان و بسامد 48

شکل 4-1 تصویر SEM لایه نازک مگهمایت در دمای ℃600…. 53

شکل 4-2 جزئیات مرتبه اول D1، دوم D2 ، سوم D3 و تقریب A3 از پروفایل نماینده مربوط به دمای ℃ 400………………….. 56

شکل 4-3 جزئیات مرتبه اول D1، دوم D2 ، سوم D3 و تقریب A3 از پروفایل نماینده مربوط به دمای ℃ 500………………….. 57

شکل 4-4 جزئیات مرتبه اول D1، دوم D2 ، سوم D3 و تقریب A3 از پروفایل نماینده مربوط به دمای ℃ 600………………….. 58

شکل 4-5 مقایسه جزئیات مرتبه 1 تصاویر SEM لایه­های نازک مگهمایت در دماهای℃ 400،℃ 500،℃600 59

شکل 4-6 مقایسه جزئیات مرتبه 2 تصاویر SEM لایه­های نازک مگهمایت در دماهای℃ 400،℃ 500،℃600………………………. 60

شکل 4-7 مقایسه جزئیات مرتبه 3 تصاویر  SEM لایه­های نازک مگهمایت در دماهای℃ 400،℃ 500،℃600………………………. 60

شکل 4-8 نمایش تغییرات پروفایل داده­های تصاویر نانو ذرات مگهمایت در دماهای℃ 400، ℃ 500، ℃600 62

فصل اول

طبقه­ بندی روش­های تعیین مشخصات مواد براساس نحوه عملکرد

طبقه­بندی روش­های تعیین مشخصات مواد براساس نحوه عملکرد[4-1].

مقدمه:

پیشرفت­های اخیر در فناوری نانو مربوط به توانایی­های جدید در زمینه اندازه­گیری و کنترل ساختارهای منفرد در مقیاس نانو می­باشد.

در علوم مختلف مهندسی، موضوع اندازه­گیری و تعیین مشخصات از اهمیت کلیدی برخوردار است به طوری که ویژگی­های فیزیکی و شیمیایی مواد، به مواد اولیه­ی مورد استفاده و همچنین ریزساختار یا ساختار میکروسکوپی به دست آمده از فرایند ساخت بستگی دارد.

به عنوان مثال برای شناسایی مواد ، بدیهی است که نوع و مقدار ناخالصی­ها، شکل و توزیع اندازه ذرات، ساختار بلورین و مانند آن در ماهیت و مرغوبیت محصول اثر دارند.

در ضمن برای مطالعه ریزساختارها، نیاز بیشتری به ابزارهای شناسایی و آنالیز وجود دارد. در ریزساختار یا ساختار میکروسکوپی مواد، باید نوع فازها، شکل، اندازه، مقدار و توزیع آن­ها را بررسی کرد. در ادامه با توجه به اهمیت دستگاه­ها و روش­های اندازه­گیری و تعیین مشخصات به طبقه­بندی این روش­ها پرداخته می­شود.

-1 روش­های میکروسکوپی

با استفاده از روش­های میکروسکوپی تصاویری با بزرگنمایی بسیار بالا از ماده بدست می­آید. قدرت تفکیک تصاویر میکروسکوپی با توجه به کمترین قدرت تمرکز اشعه محدود می­شود. به عنوان مثال با استفاده از میکروسکوپ­های نوری با قدرت تفکیکی در حدود 1 میکرومتر و با استفاده از میکروسکوپ­های الکترونی، و یونی با قدرت تفکیک بالا در حدود یک آنگسترم قابل دسترسی است. این روش­ها شامل [1]TEM،[2]AFM ،[3]SEM ،[4]STM می­باشد[6،5].

1-2 روش­های براساس پراش

پراش یکی از خصوصیات تابش الکترومغناطیسی می­باشد که باعث می­شود تابش الکترومغناطیس در حین عبور از یک روزنه و یا لبه منحرف شود. با کاهش ابعاد روزنه به سمت طول موج اشعه الکترومغناطیسی اثرات پراش اشعه بیشتر خواهد شد. با استفاده از پراش اشعه ایکس، الکترونها و یا نوترونها و اثر برخورد آن­ها با ماده می­توان ابعاد کریستالی مواد را اندازه­گیری کرد. الکترونها  و نوترونها  نیز خواص موجی دارند که طول موج آن به انرژی آن­ها بستگی دارد. علاوه بر این هر کدام از این روش­ها خصوصیات متفاوتی دارند. مثلا عمق نفوذ این سه روش در ماده به ترتیب زیر می­باشد. نوترون از اشعه ایکس بیشتر و اشعه ایکس از الکترون بیشتر می­باشد.

1-3 روش­های طیف سنجی

استفاده از جذب، نشر و یا پراش امواج الکترومغناطیس توسط اتم­ها و یا مولکول­ها را طیف سنجی گویند. برخورد یک تابش با ماده می­تواند منجر به تغییر جهت تابش و یا تغییر در سطوح انرژی اتم­ها و یا مولکول­ها شود، انتقال از تراز بالای انرژی به تراز پایینتر، نشر و انتقال از تراز پایین انرژی به تراز بالاتر، جذب نامیده می­شود. تغییر جهت تابش در اثر برخورد با ماده نیز منجر به پراش تابش می­شود.

طیف سنجی جرمی

روش­های طیف سنجی جرمی از تفاوت نسبت جرم به بار اتم­ها و یا مولکول­ها استفاده می­کنند. عملکرد عمومی یک طیف سنجی جرمی بصورت زیر است:

1 – تولید یون­های گازی

2 – جداسازی یون­ها براساس نسبت جرم به بار

3 – اندازه­گیری مقدار یون­ها با نسبت جرم به بار ثابت

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...