فصل 1- مقدمه 2
1-1- اسکرمبلر چیست و چرا از آن استفاده می کنیم؟ 2
1-2- مزایای استفاده از اسکرمبلینگ قبل از ارسال داده 3
1-3- دنباله‌های شبه تصادفی 4
1-4- معیارهای میزان تصادفی بودن یک دنباله 5
فصل 2- تئوری عملکرد شیفت‌رجیسترهای خطی با پسخورد 8
2-1- ترکیب و ساختار شیفت رجیسترها 8
2-2- سنتز الگوریتم LFSR 11
2-3- نمایش کلاسیک دنباله های LFSR 18
2-4- شبیه‌سازی و نتایج مربوط به اجرای الگوریتم برلکمپ-مسی بر روی دنباله خروجی LFSR 21
فصل 3- شناسایی پارامترهای اسکرمبلرهای خطی 25
3-1- تشخیص پارامترهای اسکرمبلر با استفاده از دنباله متن ورودی x(t) 28
3-2- تشخیص پارامترهای اسکرمبلرجمعی فقط با استفاده از بایاس متن ورودی 29
3-3- تشخیص پارامترهای اسکرمبلرضربی فقط با استفاده از بایاس متن ورودی 39
3-4- الگوریتم کلوزیو اصلاح شده 42
3-5- نتایج شبیه‌سازی الگوریتم کلوزیو روی اسکرمبلرهای ضربی و جمعی 50
فصل 4- شناسایی پارامترهای اسکرمبلر در حضور نویز کانال 54
4-1- تشخیص اسکرمبلر زمانی‌که نویز به صورت بیت‌های تغییریافته باشد 54
4-2- شناسایی اسکرمبلر زمانی‌که درج بیت به صورت نویز در دنباله رخ دهد 59
3-3- نتایج شبیه‌سازی شناسایی چندجمله‌ای اسکرمبلرها در حضور نویز کانال 65
فصل 5- شناسایی پارامترهای اسکرمبلر با استفاده از کلمه دوگان انکدر کانال 68
5-1- محاسبه بایاس بعد از کدینگ کانال 69
5-2- بازسازی چندجمله‌ای فیدبک اسکرمبلر بعد از عبور از کدینگ کانال 71
5-3- نتایج مربوط به شناسایی اسکرمبلر قرار گرفته پس از انکدر بلوکی 79
نتیجه‌گیری………………………………………………………………………………………………………..89
منابع……………………………………………………………………………………………………………………91
چکیده و عنوان انگلیسی……………………………………………………………………………………93
 
 
 
 
فهرست شکل‌ها
عنوان                                                                                   صفحه
شکل ‏2‑1. شمای کلی شیفت رجیستر خطی با فیدبک یا (LFSR) که دارای L-مرحله می‌باشد. 9
شکل ‏2‑2. مثال به کار بردن الگوریتم سنتز LFSR روی دنباله [2] ……………. 15
شکل ‏2‑3 .مدار منطقی مربوط به پیاده‌سازی الگوریتم سنتز LFSR [2] 16
شکل ‏3‑2 توزیع متغیر Z [9] 44
شکل ‏3‑3 مقایسه بین الگوریتم کلوزیو و الگوریتم اصلاح شده [9] 48
شکل ‏3‑4 تعداد بیت‌های لازم برای شناسایی چندجمله‌ای اسکرمبلرهای ضربی در الگوریتم کلوزیو 51
شکل ‏4‑1 عبور بیت‌های اسکرمبلر از کانال همراه با نویز 54
شکل ‏4‑2. فاکتور افزایش تعداد بیت‌ها(I) برحسب d و p مختلف در حضور نویز کانال 57
شکل ‏4‑3 تغییرات P(tx , id-1 + 1, Ñ) بر حسب tx …….. 61
شکل ‏4‑4 تغییرات P(tx , id-1 + 1, Ñ) بر حسب tx ……… 62
شکل ‏5‑1 ترتیب عبور بیت‌ها از انکدر کانال و اسکرمبلر 69
شکل ‏5‑2 نحوه‌ی ضرب داخلی بین بلوک‌های کد خطی دنباله بیت دریافتی و کلمه دوگان 73
شکل ‏5‑3 توزیع متغیر . 76
 
 
 
 
 
 
 
برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید /> 
 
 
 
 
فهرست جدول‌ها
عنوان                                                                                   صفحه
جدول ‏2‑1 چندجمله‌ای‌های بنیادین 21
جدول ‏2‑2 چندجمله ای های تجزیه ناپذیر 21
جدول ‏2‑3 چندجمله‌ای ‌های تجزیه‌پذیر 22
جدول ‏2‑4 نتیجه الگوریتم برلکمپ-مسی روی دنباله‌های همراه با خطا 23
جدول ‏3‑1 الگوریتم شناسایی چندجمله‌ای فیدبک اسکرمبلرهای سنکرون [6] 36
جدول ‏3‑2 عملکرد الگوریتم کلوزیو با بایاس [6] 38
جدول ‏3‑3 عملکرد الگوریتم کلوزیو با بایاس [6] 38
جدول ‏3‑4 الگوریتم شناسایی چندجمله‌ای فیدبک اسکرمبلرهای خود- سنکرون [6] 39
جدول ‏3‑5 عملکرد الگوریتم کلوزیو با بایاس [6] 42
جدول ‏3‑6. نتایج الگوریتم کلوزیو روی اسکرمبلرهای جمعی [9] 46
جدول ‏3‑7 مضارب چندجمله‌ای فیدبک [9] 47
جدول ‏3‑8 عملکرد الگوریتم کلوزیو روی خروجی اسکرمبلرهای جمعی بایاس متن ورودی …. 50
جدول ‏3‑9 عملکرد الگوریتم کلوزیو روی خروجی اسکرمبلرهای جمعی بایاس متن ورودی ….. 50
جدول ‏3‑10 عملکرد الگوریتم کلوزیو روی خروجی اسکرمبلرهای ضربی بایاس متن ورودی …. 50
جدول ‏3‑11 عملکرد الگوریتم کلوزیو روی خروجی اسکرمبلرهای ضربی بایاس متن ورودی ….. 51
جدول ‏4‑1 شناسایی چندجمله ای فیدبک اسکرمبلرهای جمعی همراه با نویز ……… 65
جدول ‏4‑2 شناسایی چندجمله ای فیدبک اسکرمبلرهای جمعی همراه با نویز ………. 65
جدول ‏4‑3 شناسایی چندجمله ای فیدبک اسکرمبلرهای ضربی همراه با نویز ……… 65
جدول ‏4‑4 شناسایی چندجمله ای فیدبک اسکرمبلرهای ضربی همراه با نویز   ………. 66
جدول ‏5‑1 بایاس اعمال شده توسط چند انکدر BCH [9] 71
جدول ‏5‑2 نتایج شناسایی اسکرمبلرقرارداده‌شده پس از کدینگ بلوکی خطی [9] 77
جدول ‏5‑3 نتایج شبیه‌سازی اسکرمبلر پس از کدینگ بلوکی 79
 
 
 
 
 

 
فصل اول
 

فصل 1-
مقدمه
مقدمه
1-1- اسکرمبلر چیست و چرا از آن استفاده می کنیم؟
یک سیستم انتقال داده دیجیتالی همواره در ارسال داده‌ها آنها را دچار خطا و آسیب می‌کند که مقدار این اختلالات و آسیب‌ها بسته به آماره‌های منبع تغییر می‌کند. گاهی اوقات همزمان‌سازی، تداخل و مشکلات اکولایز کردن به آماره‌های منبع مربوط می‌شود. اگرچه استفاده از حشویات در ارسال کدها تا حدی عملکرد سیستم را از آماره‌های منبع مستقل می‌کند اما همواره وابستگی‌هایی وجود دارد به علاوه اضافه کردن داده‌های حشویات باعث مشکلاتی از قبیل افزایش نرخ سمبل‌های ارسالی و یا اضافه شدن تراز در سمبل‌ها می‌شود. در یک سیستم ارسال کد اگر فرض کنیم سمبل‌های ارسالی از نظر آماری از هم مستقل هستند آنالیز و خطایابی آن بسیار آسان‌تر خواهد شد. به چنین منبعی که سمبل‌های آن از نظر آماری از هم مستقل هستند منبع سفید می‌گوییم چرا که آنالیز آن مانند نویز سفید گوسی است. روش‌های سفید کردن آماره‌های منبع دیجیتالی بدون استفاده از داده‌های حشویات تحت عنوان اسکرمبلینگ[1] بیان می‌شود. در مخابرات و دی‌کد کننده‌ها، اسکرمبلر[2] دستگاهی است که داده‌ها را قبل از ارسال دستکاری می‌کند و آنها را تغییر می‌دهد. این تغییرات در گیرنده به طور معکوس انجام می‌شود تا به داده‌ی اولیه برسیم. انواع روش‌های اسکرمبلینگ در ماهواره و مودم‌های [3]PSTN مورد استفاده قرار می‌گیرد. اسکرمبلر را می‌توان درست قبل از یک کدگذار FEC[4] قرار داد یا اینکه می‌توان پس از FEC و قبل از بلوک مدولاسیون قرار داد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...